

System Dynamics and Systems Thinking

Peter Ylen, PricipalScientist, peter.ylen@vtt.fi
May 25th, 2018

This work has been supported by the Strategic Research Council at the Academy of Finland, project CloseLoop (grant number 303452) www.closeloop.fi and EIT Raw Materials, project Modelling Factory (grant number PA15060).

Systems Thinking and System dynamics

Identifying complex cause and effect relationships

Tool to help construct and communicate mental models

Understanding the long- and shortterm consequences of actions

Foreseeing unintended consequences Finding leverage – seeing where actions Simulating policies under different and change can lead to significant and assumptions and uncertainties enduring improvements

29/05/2018 4

Dynamic hypothesis - Case: Project management

Let's take a simple example of project work

 A company has challenges in delivering project outcomes to the customer in certain projects ...

Some of the project participants are grasshoppers and some ants, e.g. procrastinators (with stress, burnout, low quality work, slipping deadlines) and nonprocrastinators (irritating diligent co-workers).

5

System dynamic model elements

Project scheduling

12 special product projects are scheduled

Example: Special Product manufacturing: Different strategies are simulated

Every special product is manufactured uncertainties individually (no portfolio)

Portfolio is planned and buffers are removed (no room for uncertainties)

Portfolio is planned and taken into account in robust optimization

Example: Pöyry Managing Outcome in a Complex Network

Systemic approach requires understanding of complex systems, diverse factors and their interlinkages

Business related factors

VALUE NETWORKS
Customers, stakeholders, suppliers
partners

MARKET/EXCHANGE CONDITIONS:

Customer problem; need
Price level

MARKET STRUCTURE: Competition, turbulence, Emergent vs. established

Socio-culturalregulation related factors

POLITICAL AND REGULATIVE FEATURES:

National vs. municipal-level

MINDSET

Awareness on outcomes, attitudes

SYSTEM IOF INFORMAL CONNECTIONS

Interpersonal and organizational relations, trust, quality of relationships

RESPONSIBILITY Social and environmental sustainability, equal treatment

REPUTATION Brand image

Technology related factors

TECHNOLOGY DEVELOPMENT MODE/PACE

Maturity; speed; alternatives

CURRENT INFRASTRUCTURE Manufacturing, logistics, energy etc.

TECHNOLOGY COMPETENCES
Education, R&D mindset,
know-how

DATA AND SENSORS Data, analytics, KPI metrics

From foresight to strategies

